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Substantial progress has been made in the last several years in the field

of statistical mechanics of irreversible phenomena. Not only the imortant

problem of the irreversibility itself has been clarified to a large extent,
0

but also it can be claimed now that we do have a vay of describing kinetic

equations describing particular physical situations.a ' b TheIe can be even-

tually solved, at least in principle, and provide the transport coefficients

of the particular physical system under consideration. We refer in particular

to the work of Prigogine and his collaborators, which has influenced the whole

field., c pd se Insofar as classical systems without external correlation sources*

are concerned, the problem of finding the kinetic equations (for the probability

distributions) can be considered to be solved. f On the other hand, there is

little doubt that the derivation of the particular form of this solution, based
on an infinite perturbation expansion and the use of Fourier vectors in the

place of the coordinates, shall be sieplified and that alternative forms of

kinetic equations still might be found.

In view of this generality of the results of Prigogine and his group* it
is Imperative to re the other kinds of approaches with Prigogine's results;

such a comparison can not only clarity some physical or mathematical aspects of

either theory, but also can evaluate the extent of generality and the inherent

limitations involved. We attempt such a comparison with respect to the theory

advanced by Bogolyoubov In 1 9 46 .g

Booloubov has proposed a systematic procedure of solving by successive

approximtions the Bogolyoubov-Born-Green-Kirkwood-Yvon hierarchy of Integro-

differential equations for the probability distributions for sub-sets of s

(& <N) particle@ of an N-particle system. Actually there are two versions of

the Bogolyoubov theory--ne uses the concentration C - N/V as the expansion

parameter, whereas in the other version the potential energy of intermlecular

forces, U, Is replaced by XV and an expansion in powers of X is used. In the

first version one tries to reduce the problem of N-body motion to that of

finding trajectories and moanta predicted by an exact solution of equations of

Motion for 2, 3, . • s, bodies. The potential then has to be assumed to be

* e.g., turbulencej the extent of this limitation bas not yet been fully
clarified,
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repulsive, in order to ensure that the considered a bodies would be found in

an uncorrelated state (all relative distances very large) if one goes to the

limit t-- -0 . This version has been considered by Mch and Uhlenbeck,

Hollinger,* Green, and Cohen,* and substantial results have been derived.

In the second version the reduction to the 2, 3, . . . body problem is ob-

scured by the use of a different counting parameter (i.e., %) and, indeed,

a collective motion of an electron gas can be described; on the other hand, the

boundary cc-ttions are much simpler and there is no use to assume that the

potential is only repulsive.

Since the Prigogine theory is based on a weak coupling expansion, a com-

parison with the first version would involve a rearrangement of Prigogine's

equations so that terms would be ordered with regard -to the number of particles

involved or, alternatively, an expansion of Bogolyoubov results in powers of X.

For that reason we attpted a coearison of the week coupling version of

Bogolyoubov's theory.

The weak coupling version has been applied to the plasma problem, but it

has never been formally solved to all orders of X. Chapter I deals with this

problem; the Bogolyoubov procedure is strictly followed and the formal solution

is given in the form of recursion relations betveen scattering operators,

In a second chapter now in preparation we express the results of Chapter I
0

in terms of Fourier cooneuts of the distribution function and show how the

resulting expressions are related to the kinetic? equations of Prigogine.

References to earlier work of this author can also be found in Cbepter 1.
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CHAPTER I

Chapter I is a reproduction of a paper by J. Stecki, and has been sub-

mitted to the Journal of Chemical Physics for publication. -

M{E WEAK COUPLM@ VERSION OF BOGOLYOUBOV' S KINETIC TlEORY OF GASES*)

J Stecki

Depart'ent of Chemistry, University of Southern California, Los Angeles 7,

Calif.

A;stract

The version of Bogolyoubov's theory of irreversible phenomena in gases,in which

the coupling constant is used as an expansion, parameter, is generalized to all

orders.

1
In 1946 Bogolyoubov outlined a new approach to the classical statistical mecha-

nics of irreversible phenomena in gases. This theory has been applied by Choh and
2

Uhlenbeck to derive a generalized form of Boltzmann equation in which ternary
3

collisions were taken into account. Recently Hollinger has derived equations

valid to all orders of concentration.The generalization of Bogolyoubov's trect-
4

merit to all orders of concentration was also considered by Cohen and Green and

1

NN. Bogolyoubov, Problems of a Dymanical Theory in Statistical Physics, in Stu-

dies in StatisticL Mechanics, de Boer and Ublenbeck, Editors (North-Holland Publ

Co., Amsterdam, 1962)
2

SS.T. Choh cad G. E. Uhlenbeck, Technical Report, Navy Theor. Phys. Contract No.

Nonr 1224(15) (1958)
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to which his procedure leads, ere important and oper questions. Recently this pro*
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blem has been gLven preliminary consideratior br 'e s @ w4o cqns~defe& tref*
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ly the generalization of Boltzmann equation in terms of the recentl (PJmu1te& g-
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paper an, explicit formal calculation is presented which leads to kinetic equa-

tions valid to all orders of

THE BOGOLYOUBOV WROC2UE ,f,

Let us introduce the N-particle distribution function of momenta, i , end

positions, q., normalized to unity and depending on time t. Let K be the s-par-

ticle Liouville operator, without the customary i-factors, defined as

K5 -(-A.)K

K<5= KOZ (2)

'>9 gj ,_i2 (5)

K 5 = 'E _ . ' p

t~q '~9& ~qj Pd,
)

The phase of the particle "i" is denoted by x. which is understood to be the 6-

-vector Th,. This is also abbrevis:ed as (i). Vector notation for pi' ci,

Ii is not used. The operator K corresponds to a Poisson bracket with a hamil-

tonian

with intermolecular potential

Along the mechanical trajectory of the system, is a constant of motion

( -e4- kq) #N 0()

and from this the well-lnow B-B-G-K-Y # hierarchy of equations,

+~ f d (S X4 9

Bogolyoubov, Born and Green, Kirkwood, Y von



The reduced distribution functions f(xl, ... , x;t) are probability densities

for finding a set of any a particles at specified phases X1 , ... , x6. The spatial

part of fl in a homogeneous system is c = V, where V is volume end c, number den-5

sity; the spatial part of f. reduces to c if aU particles are uncorrelated, i. e.

if all relative distances between the s particles are very large. For this reason

it is convenient to define

(10)

with the restriction s << N insofar as the system is finite, so that (9) takes

the form 4

This system of equations is not closed - in contrast to macroscopic transport
0

equations. Bogolyoubov then proceeded to assume that all higher distribution 
fun-

etions are functionals of one-particle distribution function, or rather of the set

of F ' s having positions and momenta of different particles as arguments: El,t),

F (2,t).....This allows us to write

where 0 is a time-independent operator, and the time t is the same either as ar-

g~nent of F 's or of F
1 -

Suppose now one is somehow entitled to expand

This could be substituted into (11) and the same powers of X collected. However,

the first of the equations (11) reads

so that to be consistent with (13) for s 2 we have to expend the time derivative

of F

Of T A(
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with

s Ko 0(16)

A eex '4' (Coc) Qf I) (1)

Therefore we do not expand F itself; it follows that the assumed expansion (13)

is to be interpreted as the expansion of the operator Os in powers of

0s 4~ ~) (IT)
n

The time derivative of F is then-s

• = (18)

or 0

where the operator ce m  stands for differentiation with respect to t followedm
by substitution of A(i) for EI(.), for each 1. Using (11) and collecting the

same powers of X, we arrive at the basic set of equations

Q K ) F -K 
+ t (21)

K K0 ) :F~ Z, KSV 1+ c f K(22)

which can be solved successively, when following the prescription given by Bogo-
0

lyouboN. There is a variety of choices for the zeroth approximation. Indeed, the

equation:

has a solution

f0. c(P,91; .. ; p,,c; t0 ). , q_ q,, _-,,.o-t (2i4)

reducing to a prescribed arbitrary function f0(i, ... , ;o) at t 0. Guided by

the form of the Boltzmnn equation, we want

- T :F (25)

This is obtained with the aid of "boundary condition" introduced by Bogolyoubov.

Consider expression (2k) which ca/also be written as
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ex (-1zK) fo

which is noting else than a Taylor expansion of (2) around t0 . he exponential

operator shifts the positions backwards along straight lines of unperturbed motion.

Then, for t large enough, a situation vill be reached, when all the s particles will

be distant from one another, so that F will reduce to a product of FIS. So ye put

p (-rKO) PS = TT T, ,)
+T 4-1 (26)

or in terms of?
-s

= TT , (27)

T+

0CyL s -C" > (28)

These are Bogolyoubov bcqndary conditions for homogeneous systems. In that case

F1 = F1(R,t) does not depend on position. In the inhcmogeneous case some care has

to be exercised, since P. depends on a given % explicitly and implicitly through

Pi's which do depend on positions now. The operator has a property of shifting

everything which is to its right, so that F's have to be shifted separately in

the opposite direction in order to compensate for the unwanted shift of their ar-

guments. In Bogolyoubov' a notation, writing 4(_, ... , ; ) instend of (1),

we have

Ko- (29)

The exponential operator was denoted by Bogolyoubov by S . We split (29) into

T+ CV r W05 ( 1e )T(30)

These conditions have been used by Bogolyoubov to derive (25) as the solution of

the homogeneous equation (21) and to show that the solution of ez inhczogeneous

equation

f
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4-O~ tk'O F5" ~ i (32)

is

= - C ' , '5 )  (33)
0

n
where gs may stand for the r.h.s. of (22).

JOEL SOWIIXI

Using (33) in (21) and (22) ogolyoubov derived the next approximation, which

reads

The following features exe -lear. The last term of the r.h.s, of (22) as well as

the 4a-operators through the A -,functions introduce FI'S of additional varia-

bles which are always integrated over, as indicated in (22) end in (17). To each

variable there corresponds a power of a. We denote these "dummy variables" by sub-

scripts oe, o P ... or W , P . The variables represent the "average particles

of the medium" allowed to interact with the fixed set of s particles whose posi-
n

tions and momenta are the arguments of F . For given n there can be at most lmn-

dumy variables. Also F's appear only as a product. Therefore we assert that (18)

can be replaced by

S(oTFe T N I ) (35)

where the operators S) are to be determined. It is understood that they act

on the main set _ and o the set of dunmy variables O,0 ... , Nve . N the

results of action of c-operators can be written down explicitly. When makin use

of (17) and (35), we obtain

a o ~TrV (i) TF P,(j) Aft,i' Celi (36)
= i-Ft

0QV ~ iT .(P (A)TT- 1i(P)
C~ da-P,&
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.L ( i) CI2 )

This term can exist for n >i 3. Finally

n

We now substitute these expressions into (22) an (33). We find F in the form (35),
-s

which proves (35) by induction, (31i) being given. When collecting the same powers of

Aand c we find three separate recursions - two particular cases

T ()

S2 .., T.)-TI (A)0j I+ (Pc)

0

This ter cena wfor nS 6 ~ 3.Fzal

0

+-I G 6 Tr P

th

whis is the formal solution, valid for gll n 1. Now the operators he can be col-

culated successively by simple lebra. Smne minor siclificatio s achevd by a-

0 ax"2x C L" -'S Sk s~s xP( -- ftV.5(39
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king the integrals explicit; there are n integrations over T, * n and1

In

integrations over x , x , .... We note that them is a separate recursion

for t= 0; the operators -a ' represent approximations th the s-body problem of

isolated s particles involved in F-. The other separate recursion involves the lar-

gest power of a possible for given power of X . tese terms have been considered

by Guernsey . For a homogeneous system they lead to Belescu-TAnard equation.

sm RO~MOMMESYSTE

Considerable sirplifications occur if it is assumed that 7 does not depend on

position. Then

* (413)

Also, due to spherical synmetry of the interaction potential

= o (4)

We can also now identify the T-integrals with the free propagators familiar from

I0
the scattering theory, for which many equivalent representations are kn .Hence

we introduce the abbreviation

*~x(-cO (4I5)
0

With (25) unchanged, we obtain

and the following recursions resulting from (39)-(41)

0 ~ 0 Y' (417)

2...41 --a' +l, "'-, A [D + -d f .

(1.1'Th'I -C S'2
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R= aI" (49)

DISCUSSION

The last recursion, (49), is of remarkable simpicity. It has been examined by
8

Guernsey in a different but equivalent form and shown to lead for a = 2 and when

used in conjunction with (15)-(l7) to the Balescu-Lenaid kinetic equation. Notably
Mt-

1 is a sn of binary terms, so that j. ) Just cancels a term in .f ,.

The general term is of the form

C3

so that no two propagatorm follow one another without being separated by (a sun of)

scattering operators ij" This can be traced bark to the fact that only O)

contributes here. As con be seen from (4T), that is no longer true in the general

term, 1 - Q M- '- . Each SJ -operator contains always one q, at the outmost

left resulting directly from (33). Therefore the last term of the r.h.s. of (48)

will introduce a (39 sequence, which will reappear later to give rise to a

e sequence, etc. We see that, indeed, the terms with nc are

exceptionally simple.

The Markovian character is assumed explicitly as early as in (12). A non-Marko-

vian behaviour could result, if we would allow the operator Os to depend on time t

and it is not clear how this could be done without departing radically from the Bo-

golyoubov procedure. On the other hand we know that the most general kinetic equa-

tiOns are nol-Markovian10

Owing to the siMplicity of the b conditions, there is no need to assume

that the Intermolecular potential is only repulsive 1 , 3s4 and all expressions are in

principle amenable to explicit calculations. On the other hand, sone individual

integrals can diverge owing to the repulsive force being infinite at the center of

I1



the particle for cmn potentials; hance acm resiU.BtiOl 10M~dlS MY be DIISId 3

- a~ cui feature of all vak-coupJ~ag theories.

T'he author is indebted to Dr Howard S. Taylor, frCoil tbis Univasiity, for sua-

ting the problem and for several helpful discussions .


